Symplectic Geometry – Homework 2

Due on April 27th 2015, in class

Exercise 1.

Let $A \in GL(m; \mathbb{R})$, and consider its (unique) polar decomposition $A = P \cdot Q$, with P positive definite and symmetric and Q orthogonal. Prove that $P = \sqrt{AA^T}$ and hence $Q = (\sqrt{AA^T})^{-1}A$; namely, prove that $\sqrt{AA^T}$ is positive definite and symmetric, and $(\sqrt{AA^T})^{-1}A$ is orthogonal.

Exercise 2.

Prove that the following inclusions

$$O(2n)/U(n) \hookrightarrow GL(2n; \mathbb{R})/GL(n; \mathbb{C})$$

and

$$O(2n)/U(n) \hookrightarrow GL(2n;\mathbb{R})/Sp(2n)$$

induce a homotopy equivalence.

Exercise 3.

Let $\Omega(\mathbb{R}^{2n})$ be the space of different symplectic structures that can be assigned to \mathbb{R}^{2n} , and ω_0 the standard symplectic form on \mathbb{R}^{2n} . Then there is a natural *action* of $GL(2n; \mathbb{R})$ on $\Omega(\mathbb{R}^{2n})$ given by $(A \star \omega)(\cdot, \cdot) = A^* \omega(\cdot, \cdot) = \omega(A \cdot, A \cdot)$ for every $\omega \in \Omega(\mathbb{R}^{2n})$. Being an action means that $Id \star \omega = \omega$ and $(A \cdot B) \star \omega = A \star (B \star \omega)$ for every $\omega \in \Omega(\mathbb{R}^{2n})$.

• Prove that

$$\Omega(\mathbb{R}^{2n}) \simeq GL(2n; \mathbb{R}) / Sp(2n)$$

(Hints : What is the orbit of ω_0 ? And why? What is the stabiliser of ω_0 ?)

- For which values of n does $\Omega(\mathbb{R}^{2n})$ inherit the structure of a group?
- Compute these groups for such values of n explicitly.

Exercise 4.

(Linear symplectic reduction)

Let (V, ω) be a symplectic vector space and $W \subseteq V$ a coisotropic subspace. Show that the quotient W/W^{ω} carries a natural symplectic structure ω' induced by ω .

Exercise 5.

Let (V, ω) be a symplectic vector space and $W \subseteq V$ any subspace. Show that the quotient $W/(W \cap W^{\omega})$ carries a natural symplectic structure induced by ω .