Algebraic Topology - Homework 10

Due date: January 7th in class

Exercise 1.

Prove the following

Lemma 1. Let X be a topological space. Then

- (i) For any homology class $x \in H_n(X)$ there exists a compact set $C \subset X$, with inclusion map $i: C \longrightarrow X$, and a homology class $x' \in H_n(C)$ such that $i_*(x') = x$.
- (ii) Let $y \in H_n(C)$, with $C \subset X$ compact, such that $i_*(y) = 0$. Then there exists a compact subset C' satisfying $C \subset C' \subset X$, with inclusion map $j: C \longrightarrow C'$, such that $j_*(y) = 0$.

Exercise 2.

Prove the following corollary of the Jordan-Brouwer separation theorem:

Corollary 2. Let $f: S^{n-1} \longrightarrow \mathbb{R}^n$ be an embedding of an (n-1)-dim. sphere into \mathbb{R}^n , i.e. f is a homeomorphism onto its image, and suppose that $n \geq 2$. Then $\mathbb{R}^n \setminus f(S^{n-1})$ has two components U and V, U unbounded and V bounded, such that V is acyclic and U satisfies $H_i(U) \simeq H_i(S^{n-1})$ for every i.

Exercise 3.

Compute the homology of $S^2 \times S^1$ using the Mayer-Vietoris sequence associated to the sets $A = S^2 \times (S^1 \setminus \{p\})$ and $B = S^2 \times (S^1 \setminus \{q\})$, where p and q are distinct points in S^1 .

Exercise 4.

Exercise number 4 on page 205 of Hatcher's book. Observe that in particular you should define a boundary operator δ_n : $\text{Hom}(G, C_n(X)) \longrightarrow \text{Hom}(G, C_{n-1}(X))$ using that of the given chain complex (C_n, ∂_n) , and check that what you obtain is a chain complex $(\text{Hom}(G, C_n), \delta_n)$.