Algebraic Topology - Homework 5

Due date: November 19th in class

Exercise 1.

- (1) Recall that the **wedge sum** $X \vee Y$ of two topological spaces X and Y, with given points $x \in X$ and $y \in Y$, is the quotient of the disjoint union $X \coprod Y$ obtained by identifying x with y. (Here you *cannot* use Proposition 1 in Exercise 4, you need to do it directly.)
 - Endow the wedge of g circles with the "obvious" Δ -complex structure (which has exactly g 1-simplices) and compute its simplicial homology.
- (2) Endow S^2 with a Δ -complex structure with two Δ^2 simplices identified along their boundaries with identity map. Compute the simplicial homology of S^2 .

Exercise 2.

Exercise number 5 page 131 on Hatcher's book. (Click here for Chapter 2.)

Exercise 3.

Let X_n be the topological space obtained from an n-gon with identifications on the boundary induced by the word $\overbrace{a \cdot a \cdot \cdots \cdot a}^{n \text{ times}}$. (For example, X_2 is $\mathbb{R}P^2$.) This space is also called n-fold dunce cap.

- (a) Compute $\pi_1(X_n)$.
- (b) Endow X_n with a suitable Δ -complex structure, and compute its simplicial homology groups. (Hint: Consider the regular polygon with n edges. Consider the Δ -complex structure obtained by adding a vertex in the middle of it, and 1-simplices pointing radially inward.)

Exercise 4.

In this exercise you will need the following

Proposition 1. Let X_{α} be topological spaces endowed with a Δ -complex structure, and consider $\vee_{\alpha} X_{\alpha}$, which can also be endowed with a Δ -complex structure. Assume that each of the point $x_{\alpha} \in X_{\alpha}$, identified in the wedge sum $\vee_{\alpha} X_{\alpha}$, has a contractible neighborhood in X_{α} . Then $H_i^{\Delta}(\vee_{\alpha} X_{\alpha}) \cong \bigoplus_{\alpha} H_i^{\Delta}(X_{\alpha})$ for every i > 0.

Given finitely generated abelian groups G_1 and G_2 , with G_2 free, describe a finite 2-dimensional Δ -complex X which is connected and such that $H_1^{\Delta}(X) \cong G_1$ and $H_2^{\Delta}(X) \cong G_2$. (Hint: use the fundamental theorem of finitely generated abelian groups.)